
page 1

Scripting with iView Multimedia
by Yan Calotychos, ©iView Multimedia Ltd. 1999

Introduction

As of version 3.5, iView Multimedia enables users to extend its functionality via

AppleScript.

iView Multimedia offers a rich AppleScript vocabulary, primarily designed to allow

export and import media files, as well as annotations, media info and digital

camera info, to and from the Finder and third party data base and spreadsheet

applications.

The iView Multimedia vocabulary does NOT intend to replicate functionality provided

through the interface of the application, nor is it intended to be used as a remote

control to drive the software.

AppleScript, though elegant and syntactically natural, it is a programming

language, and as such, unless it is used consistently (and frequently), it can be

frustrating in order to accomplish a task that could otherwise, be issued with a

single click via the application's interface.

However, there are times when a solution to a problem may require a highly complex

and densely populated dialog to accomplish. For example assume you had 200 media

files in a catalog and you wanted to rename them incrementally, but also based on

type. This kind of problem would require a "rename" dialog with several options and

settings that would at best be intimidating and very confusing.

This is when AppleScript becomes useful.

iView Multimedia uses AppleScript to extend it's functionality, to handle specific

situations that are either too repetitive to do via the interface or too complex to

do via a settings dialog.

page 2

Thinking about writing your own scripts?

Well, as mentioned earlier, AppleScript is a computer language, and as such you'll

need to learn its intricacies in order to use it.

Examining dictionaries via AppleScript Editor helps.

Studying samples provided with most applications that support scripting also helps.

However be warned!

Unlike other computer languages, AppleScript is rather 'free form'. A program line

that works fine with one application may not work on another, as both vocabulary

and syntax used are application (and implementation) dependent. In other words the

use of an AppleScript verb (such as 'close') in an application depends very much on

the nature of the application and the way the application interprets it.

The 'Object' model

The object model is the most widely adapted way to support AppleScript, as it

provides a 'natural' way to present and describe the scriptable functions of the

application.

The user can start thinking in terms of objects (a window or a media object), their

properties (name, position, etc.), and one or more actions (events), that can be

applied to, in order to get or set that object's properties.

Scripts lines typically contain a verb (event), a noun (object).

 [close] [window] [whose name contains "caltalog"]

And typically some clause that specifies the object on which the verb (event) is

applied to. This event is generally associated with a property of the object (such

as its name, visibility, position, etc.).

Objects in iView Multimedia

iView Multimedia is modeled on 4 objects: the application object; the window

object; the media object, and the mark object.

A single "application" object can contain one or more "windows" and a set of seven

"marks". Each "window" can contain one or more "media objects".

Each object has a set of properties, specific to iView Multimedia.

page 3

application

mark

window media object

name
color

name
version
frontmost name

index
bounds
importing
selection

name
index
path
URL
thumbnail
mounted
mark id
media info
annotations
photo info

Figure 1. iView Multimedia Objects and Object Properties

The 'application object' is typically launched via the Finder, and supports a few

universal events such as 'open', 'quit', 'print' etc.

The 'mark object' is associated with a unique set of colors that can be used to

'color' & 'label' media in an open catalog. Both the 'name' and the 'color'

properties of a mark object can be retrieved and modified via apple events.

Note that under the current version there is only a single set of 7 marks available

by the application.

The 'window object' is associated with a iView Multimedia catalog. An important

property of the window is 'importing' which indicates the state for a particular

window. An AppleScript can wait until the importing is complete (its value is

false) in order to perform an action such as closing, printing or saving the window

contents in a catalog file.

Finally the "media object" (referred to as object for short), carries all

properties for an entry in your catalogs. These include the basic elements such as

name and location of the original file in your disks, and more complex elements

such as the annotation, media and photo info records that include a list of sub-

properties that define the object in greater detail (see the applications

dictionary).

Where do I go from here?

Through a small and easy to learn set of Apple Events, iView Multimedia enables you

to share data between iView Multimedia and other AppleScript aware applications,

page 4

including database, D.T.P. and spreadsheet applications.

This enables you to use dedicated software for archiving, printing and data

editing. AppleScript also enables you to create complex scripts to edit your

annotations within iView Multimedia.

For more information please study the sample scripts provided in this package. You

may find that most code is commented. You can start removing comments line by line

and try each line with an open iView Multimedia catalog.

Supported Apple Events for each object type.

Event App Win Obj Mrk Remarks

--------- --- --- --- --- ---

count √ √ √ √ Count objects within a parent object.

exists √ √ √ √ Verify if an object exists.

data size √ √ √ √ Data size of a property of an object (in bytes).

get √ √ √ √ Get the value of a property of an object.

set . √ √ √ Set the value of a property of an object.

save . √ . . Save a window in a catalog file.

close . √ . . Close a window.

select . √ . . Bring a window to front.

make . √ . . Make a new window.

delete . . √ . Delete one or more objects.

--------- --- --- --- --- ---

do menu √ . . . Trigger selected menu items

open √ . . . Open catalogs or files/folders in window

print √ . . . Print catalogs

quit √ . . . Quit application

